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SUMMARY

This report presents ,a description of the software developed for
WEST-3, a new, all digital, and fully programmable wind turbine simulator
developed by Paragon Pacific Inc.. In addition to the usual complement of
software found in any digital computer, WEST-3 has additional software
modules specialized for the processing of wind turbine simulation models.
In the report, the process of wind turbine simulation on WEST-3 is
described in detail.

The major steps are, the processing of the mathematical models, the
preparation of the constant data, and the use of system software to
generate executable code for running on WEST-3. The mechanics of
reformulation, normalization, and scaling of the mathematical models is
discussed in detail; in particular, the significance of reformulation which
leads to accurate simulations. Descriptions of the preprocessor computer
programs which are used to prepare the constant data needed in the
simulation are given. These programs, in addition to scaling and
normalizing all the constants, relieve the user from having to generate a
large number of constants used in the simulation. Also given in the report
are brief descriptions of the components of the WEST-3 system software:
Translator, Assembler, Linker, and Loader. In common with other digital
computers, the task of the WEST-3 system software is to generate the code
which can be loaded into the machine.

The report contains details of the aeroelastic rotor analysis, which is

the center piece of a wind turbine simulation model. Listings of the
variables, constants, and equations used in the simulation are also given.

vii




1. INTRODUCTION

Paragon Pacific Inc. has developed the WEST-3 for the real-time domain
simulation of wind turbines. WEST-3 is an all digital, fully programmable,
parallel processing system. It avoids the "hardwired" analog implementation
of the previous WEST systems. High speed simulation is made possible by the
parallel processing capability, and full programmability is assured by the
all digital technology. A complete description of the WEST-3 system can be
found in References 1 and 2. The details of the WEST-3 software are
presented in this report.

The overall performance and usefulness of any simulation system depends
upon the effectiveness of the software; and WEST-3 is no exception., The
primary objective of the software developed for WEST-3 is to make it easier
for a user to conduct useful wind turbine simulations. To meet this
objective, in addition to the usual complement of software found in any
digital computer, WEST-3 has additional software modules specialized for
the processing of wind turbine simulation models.

Figure 1.1 shows an overall schematic of the WEST-3 simulation process
consisting of,

1. preparation of the simulation model ( rotor and subsystems )
2. preparation of the constant data

3. use of the system software to generate executable code

4. running of the simulation and the inevitable debugging.

Presented in this report are descriptions of the various components of
software required to carry out a wind turbine simulation on WEST-3. The
report closely follows the schematic of Figure 1.1, and is organized as
follows:

Section 2 contains descriptions of all the mathematical models used in the
simulation. Reformulation, normalization and scaling, which are of critical
importance in WEST-3 simulations, are discussed in Section 3. A discussion
of variable scale factors is presented in Section 4. Subsequent sections
deal with the preparation of constant data, and the system software
available in WEST-3. Section 7 contains some concluding remarks. A list of
References is given in the last section. Appendices contain some important
details of the aeroelastic rotor analysis, gimbal analysis, and complete
listings of the variables, constants, and equations used in the simulation.
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2. WIND TURBINE MATHEMATICAL MODEL

The simulation model of a wind turbine is a mathematical description of
a number of complex physical phenomena involved in the extraction of useful
energy from the system. The full model is formed by combining a number of
smaller models of the various physical systems in the problem. Figure 2.1
shows the overall configuration of the simulation model. It is a synthesis
of models for the rotor, the air mass, the support (tower), the power
train, and the control system. Figure 2.2 is a more detailed schematic of
the simulation model showing the variables that are passed among the
subsystems.

Appendix A defines the general nomenclature conventions used in this
report. Some of the nomenclature used in this report differs from
conventional practice, Therefore, a study of Appendix A 1is strongly
recommended for an understanding of the equations presented in this report.
Also Table B.l1 of Appendix B contains the nomenclature pertinent to the
rotor model. A definition of all the variables and constants used in the
simulation model can be found in Appendix F.

Models presented herein have been used in other wind energy system
simulations (see, for example, References 3, 4 and 5). The descriptions of
the models presented in this report are complete, and should not require
references other than standard texts on mechanics and controls. However,
References 3, 4 and 5 do present useful data on more detailed versions of
these models. Some of the major features of the model implemented in WEST-3
are,

1. Three elastic degrees of freedom for each blade

2. Tower model with six physical (three modal) degrees of freedom
3. Gimballed/Teetering rotor capability

4. Blade tip loss, and flow retardation effects in the rotor

5. Nonlinear wind shear model

6. Bandpass wind gust filters

7. Tower shadow model

8. General models for the power train and control system

Due to the modular nature of the implementation, and the full
programmability of WEST-3, alternate models/tasks can be incorporated with
relative ease. Following are descriptions of the subsystems shown 'in
Figures 2.1 and 2.2.

2.1 Aeroelastic Rotor

Of all the subsystems, the rotor is by far the most complex accounting
for a bulk of the computational load in the simulation. A detailed
description of the aeroelastic rotor model is given in Appendix B. Figure
2.3 shows a simplified schematic of the rotor model. Following is an
outline of the major tasks performed in the rotor model, during numerical
integration, for every azimuthal position of the rotor.

* Compute the aerodynamic loads on the blade by using strip theory.
Each blade is divided into a number of radial segments and radial
stations. The aerodynamic coefficients, as functions of the angle of
attack, are obtained by table look-up.

2-1
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* Determine the effects of elasticity on the blade deflection,
velocity, acceleration, and loading at each radial station.

* Obtain the forces and moments at the rotor hub by a summation of the
loads at all the radial stations of the blade.

* Account for the effects of the rotor hub degrees of freedom, i.e.,
gimbal (teetering), if present in the model.

2.2 Support (Tower):

The following tasks are performed in the tower model:

* Simulate the dynamics of the tower/nacelle by using the modal
analysis, the modal information being typically generated by a finite
element program such as NASTRAN.

* Compute the velocity and acceleration of the hub for use by the rotor
model.

It 1is not practical to hypothesize a fully general model for a
subsystem such as the support system, because of the many possible designs.
Accordingly, the approach taken herein is to implement a general linear
model. Other nonlinear phenomena, such as hysteresis in gear trains, can be
included in the model as and when required. The support system equations
which can incorporate many configurations of tower/nacelle dynamics are,

*"+D.s"+W..s=
s Dg. s Wﬁ 9gr

where

9s < Gsf' fh + Gsm' T
The hub velocity and acceleration are given by,

=S .8 +v : w, =S .58’ +Ww
Vi Sv s : Sw

bh h bh
Vi = Sye 87T+ VL wp = S.. 87T +w

A modal model has been used (see discussion of modal analysis in Appendix
B). The vector, s, contains the normal coordinates. The vector, g _ contains
the generalized forcing functions, each divided its Tespective
generalized mass. The diagonal operators, D_., and W_~. are damping and
frequency matrices, respectively, associated with the normal mode analysis.
The forces and moments acting on the tower are, respectively, and m

The operators, S.. and S . are the modal matrices, so that they produce tge
shaft motion when they operate on the normal coordinate velocity, s°.

Arrays G . and G__. operate on the shaft loads produced by the rotor
to generate Ehe genePLllzed forcing function. These operators can be
derived by transposing the modal matrix operators followed by dividing each
resulting row with the generalized mass of the associated mode.



Columns v h and Wn are incorporated in the support system model, which
are supplied ?o the mJ%el from an external source. These columns represent
"base" motions of a moving system to which the elastic support system is
attached (e.g., if a wind turbine is mounted on a barge). The external
source can be the System IO Data Interface (SIDI) incorporated in the
WEST-3 hardware, or it can be an additional set of models coded and loaded
in WEST-3 to represent such a base flexibility. These additional columns
have been incorporated in the model at this Jjuncture to provide more
generality.

A specialized version of the general matrix support modeis as presently
implemented consists of a tower with three modal degrees of freedom, in the
following directions: surge (motion along the #3 rotor axis), sway (lateral
motion along the #2 rotor axis), and yaw (rotation about the #1 rotor axis,
or tower torsion).

2.3 Control System:

The function of the control system is to change the blade pitch angle
so that a desired rotor speed and/or power output is maintained. As is the
case of the support system, control systems <can take on many
configurations. A general linear state controller model is implemented in
WEST-3. This model can embrace many control system configurations, but will
require additional code if nonlinear phenomena are to be included. The
generic equations are,

a"+A_.a=a M +a_2Z+a 2°+a_2 + a P+ a S+ a’
a PP Z zd g "a pr rq sr “rq o

c = Ca. a+ cp Mp + cz 2 + cZd 77+ cg Za + cpr Prq + csr Srq + cO

Z°+L 2 +L _ P + L S+ L

T
Lo = Ly» @ + LM+ L 2+ Ly g %a * Tor Prq * Dsr Seq * Do

gc

The column, a, is the state vector for the system, and can be any size.
Control system degrees of freedom associated with filters, compensation
networks, integrators, etc., can be converted into the state form shown.
The control system receives inputs, processes them with the state
algorithms, and produces outputs. Inputs are: command requested power
(p_ ), command rotor speed (S__), rotor speed (Z), rotor acceleration (Z°),
powér train moment (M), 5gd alternator speed (Z_.), and the shaft
velocities and time derfvatives of velocities. The zefo subscript denotes
initial conditions or some constant offsets, 1if any. The control system
produces the control column, ¢, for the rotor, and a torque on the
alternator rotor, Lgc‘

Figure 2.4 shows an example of a control system which is typical for a
wind turbine; blade and alternator controls are included.
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Referring to Figure 2.4, the equations for this system can be written
as follows; the basic equations are shown first, followed by an equivalent
version which conforms to the general state controller model.

Basic Equations:

Controller: Alternator
Ze = (Srq - 2) A3 = Kpp (Za - Zn)
Al = KI Ze Lgc = Kpl (Kpf Prq - sz Za - A)
A2 = (l/Tc) (A1 - A2 + Kc Ze)

Rearranged Equations:

Ze=(Srq-Z)

Ai = Azl Ze

By = By By T AgpoPy t AT
Ay = Agy 2, + A

L =L.,A, +L P

gc al3 "3 pr "rgq * Lg 25

Cl = Calz A2 +ee.s.. Blade Pitch Angle

Once the derivatives, a°, are computed, the control column, a, is
obtained by numerical integration. The Euler integration method has been
used in WEST-3; the time derivative is simply multiplied by the time step
to get the change in a over a time interval. This method is suitable in
most cases because the periods associated with most wind turbine control
systems are long compared with the numerical integration step size. If the
control loops incorporate high gains, and therefore produce high frequency
control modes with short periods, then a more sophisticated numerical
integration algorithm might be indicated.

2.4 Power Train

The following tasks are performed in the power train model:

* Compute the rotational acceleration and velocity of the rotor, taking
into account the dynamics of the power train components.

* Determine power generated and the reaction loads applied to the
support.

* Advance the azimuthal position of the rotor.

2-8




The general linear power train model in WEST-3 can be written as,

Jp.p +Bp.p +Kp.p=pth3+pLLgc+pzdz

p = (pl, pz), power train variables; zZ = pi ; 2% = pi’

A standard differential equation is incorporated, with inertia, damping
and stiffness arrays, J.., B_. and K .. Variable inputs to the model
include the rotor torque,s> ’ %eneratorpcontrol torque, L (i.e., torque
applied to the generator rotor by the electrical system Which is part of

the control system in these WEST-3 models) and rotor spin acceleration, Z°.

Appendix E presents a derivation excerpted from Reference 4 which
provides for a single power train degree of freedom. This simple analysis
reveals the "algebraic loop" problem that rises naturally from the
derivation of a power train model: this loop will drive almost any computer
implementation of a power train model unstable. The reformulation used in
Appendix E to solve this problem requires subtracting the influence of 2°
from the rotor shaft torque, and including this inertial effect instead in
the power train equations. This approach, which is essential for successful
power train simulation, requires the parameter, 2°, as an input. The
generation of this parameter should be the same (in time) as that sent to
the rotor to produce the rotor torque being used to solve the power train
equations over a time step.

However, in some cases, even the reformulation outlined above may not
prevent numerical instabilities when the power train model is coupled with
the rotor model. In fact, the problem occured during the WEST-3 validation
studies when the MOD-0 wind turbine was being simulated. Full details of

the nature of the instability, and the special procedure devised to correct
it can be found in Reference 7.

Figure 2.5 shows an example power train with two degrees of freedom.

w2 w

1
— —_——

/ ! K
g ANAN— A —]
2 — L 2 — 1 Mh R
4 = g¢ g
/ IR

77777 Voewd

Alternator Power Train Rotor

Figure 2.5 Example of a Power Train Model



Referring to Figure 2.5, the governing equations are,

Jl wito= - Kl (wl—wz) - Bl (wl-wz) - Cl Wy + Mh
J2 wyt = + Kl (wl-wz)‘+ Bl (wl-wz) - C2 W, = Lgc

These basic equations have to be "reformulated" (see Section 3.1 for a
diccussion of reformulation) to maintain computational accuracy.
Accordingly, the generic positional coordinates are replaced by
"differential” coordinates (which are the differences between positions of
neighboring inertias in the model). The reformulated equations are,

Pi° = ~ Ky Py~ Bpn Py T By Pyt Py Myt Ppgp 2
Pt = = Kypp Py ¥ Booy Py T Bppy P F Py Myt Ppgp T TP Ige
where,
Pp=% 2 =P
Pyp=w =% 2.=p
Z =

(pi - pi) ... Alternator Speed

The constants in the equations are defined as,

J =J, +J

T 1 "R

Kp12 = K1/ I Ppp = 17/ 9q
szz = (Kl/JT) + (Kl/Jz) Ppy = 1/ I
Bo11 = €1/ I Pra1 = IR/ I
Boiz =By / I Pra2 = IR/ 1
szl = (C,/3,) - (C; /3. Pp =1 /3,

szz = (Bl/JT) + (Bl/Jz) + C2/J2

The reader is directed to Reference 5 for more detailed derivations of
power train models. The Reference shows that even very general power

distribution system models convert to expressions of the form presented in
this Section.
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The azimuthal position of the rotor is advanced by using a "rate
resolver" algorithm. Actually, the sine and cosine of the azimuthal angle
are generated as follows:

sin(Y+DY)

sin(Y) cos(DY) + cos(Y) sin(DY)

cos (Y+DY)

cos(Y) cos(DY) - sin(Y) sin(DY)

where Y is the current azimuthal angle, and DY is the advance angle which
is a function of the numerical integration step size and the rotor speed.
However, the algorithm is unstable in the sense that amplitude errors cause
the sum of the squares of sine and cosine to be other than unity. To
correct this problem, the cosine of the advance angle is varied small
amounts from its nominal value (near 1.0) to correct for amplitude errors.
The procedure is as follows:

Given: Z (rotor speed), DT (numerical integration step size),
current values of cos(DY), Sin(Y), and cos(Y).

i. Compute sin(DY): sin(DY) = Z DT

ii. Compute the amplitude error: e, = sinz(Y) + cosz(Y) -1

iii, Make correction to cos(DY): cos (DY) = cos(DY) - Ga e,
new

iv. Compute the sine and cosine of the new azimuthal position, by using the
new, corrected value of cos(DY).

Here the gain factor G, has be chosen so that the algorithm is stable. For
wind turbine simulation work the choice of Ga = 0.25 yielded good results.

2.5 Air Mass

The following tasks are performed in the Air Mass model:

* Define the linear and rotational velocities of air flow around the
rotor.

* Compute the air flow retardation velocity as a function of the rotor
thrust by using the standard Glauert momentum model (Reference 6).

* Simulate the effects of wind gusts by generating random number
functions which appear as white noise in the system. The desired gust
spectra are obtained by using quadratic filters.

* Determine the influence of wind shear and tower shadow on the air
flow as seen by the blades.

2-11



The equation for the retardation velocity can be written as,

2,1/2

Vew = Rap RHOp Fpp3 / Vanz * Vans!
where V_ _ is the retardatlon velocity, F is the rotor thrust, RHO_ is the
air density ratio, is a constan@ and v are the local
aerodynamic velocity coﬁponents. Note that an 1mpE%c1t %op exists in the
model, since the local aerodynamic velocity is itself a function of the

retardation velocity. The problem is solved by a servo loop shown in Figure
2.6.

FH3% RHGR VWI+VGI
i ¥
VRW VAH
—> KAR‘ 2
1. .4
aC=v/oT 1B X +
Fl4f'-lr “é - -+
A 4+
r—" {——
VAH2
4 |

Figure 2.6 Servo Loop for the Air Flow Retardation Velocity

The servo loop solves for the reciprocal of the local aerodynamic velocity,

_ 2 2,1/2
R, = l'/(Vahz * Van3 )
The calculation first computes an error function,
_ 2 2 2
e =1+ - R Vah2 ¥ Van3 )

Wthh is zero if R is correct. This error is multiplied by a gain factor,

; (which is lnput data to WEST-3) to produce a change in R which is in
tﬁe direction to correct the error.

The size of the loop gain, G will determine the speed at which the
servo will converge on the correé% solution. Excessive gains will lead to
instability, however. Because the servo is nonlinear, the stability margin
for the system varies over the operational envelope.
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The local aerodynamic velocity can now be written as,

Vae = Vo T il er + vg
Wop = Wt ¥g

Vah = Vn * Ry (Y Ve
Yah = Wp * Rz (er)' Yt

The retardation velocity computed by the servo discussed above is
subtracted from the ambient wind. The steady windspeed is specified by the
two input columns, vw and ww. To these are added gust columns, v_ and wg.

Windgusts are simulated by generating random number functions which
appear as white noise in the system, and then by passing these through
quadratic filters to produce gust spectra with controllable bandwidth,
magnitude and center frequency. Six independent filters are incorporated,
so that the wind can gust in six degrees of freedom near the rotor. The
equations are,

+B.qgq + K. =r
% g 99t Bgr 99 = I
Vg = Yqur Y

= w - °
Yg = "qur 99

The windshear modulates the windspeed locally at a blade element
depending -on the distance the element lies above the ground. A table
look-up scheme permits the use of an arbitrary nonlinear profile for the
wind. The tower shadow effect (windspeed changes due to proximity of a
blade to the tower) is usually specified as a percentage by which the wind
speed is reduced, when the blade is within the shadow region, either
rectangle or a sector. In general, windshear and tower shadow effects on
the local blade aerodynamic velocity are implemented by calling two
subroutines as follows:

S

]

hr = SHEAR ( cos (Yi)' sin (Yi), Sj )

S

SHADOW ( cos (Yi), sin (Yi), S. )

hd ]

v = S

* *V
aa hr S

hd ah

where Y. is the azimuthal angle of the i-th blade, S, is the position j-th
radial Station, Sh is the correction factor due to wind shear, and S is
the correction factor due to tower shadow. The augumentive velocity, Vaa’
is added to the local aerodynamic velocity to account for the wind sh&ar
and tower shadow effects., In some cases, such as when the wind shear
profile is linear, the corrections to the local aerodynamic velocity can be
obtained by simple algebraic equations, instead of calling subroutines,
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3. SIMULATION MODEL: REFORMULATION, NORMALIZATION, AND SCALING

The simulation of a wind turbine system begins with the mathematical
modelling of the various physical phenomena which are occuring in the
system. The mathematical models are then "processed", taking cognizance of
any special numerical problems, and the characteristics of the simulator on
which the models are to be solved. For example, all the computations in
WEST-3 are done in 16-bit fixed point arithmetic with the attendent
limitations in accuracy of the computations. Special software could be
written to perform 16- or 32-bit software floating point operations.
However, such software would drastically reduce the speed of simulation.
Therefore, 16-bit fixed point computations have been retained in the
WEST-3, and the simulation model has to take cognizance of this fact.

The objective of processing the mathematical models is to come up with
a simulation model which permits

1. Accurate simulations in real time
2. Adapation to wind turbines of varying physical sizes.

Presented in this section are details of processing needed for wind turbine

simulation on WEST-3. There are essentially three steps; Reformulation,
Normalization, and Scaling.

3.1 Reformulation

Many subtle numerical problems arise in a wind turbine simulation; in
particular, in the solution of the aeroelastic rotor equations. There are
effects in the model that produce very large numbers. In the final results,
differences of these large numbers yield small numbers which reflect some
very important dynamical characteristics. The computation of the small
differences of large numbers can lead to inaccurate results even in
computers having large word sizes. On WEST-3, with its 16-bit fixed point
arithmetic, this problem can completely destroy the accuracy of the
simulation.

The answer to the problem is to reformulate the equations in such a way
that small, important effects are not masked during the computations. The
idea is to generate equations where subtractions of large numbers have
already taken place so that, in the simulation, one solves directly for the
important small-difference terms. The specific ways of reformulation must
be selected with a thorough knowledge of the physics of the problem, The
models and their special idiosyncracies must be well understood so that the
critical areas that produce numerical problems can be identified and
reformulated. Full details of the reformulation of the aeroelastic model
used in WEST-3 can be found in Appendix B.

3.2 Normalization

The reformulated model goes through a process of normalization. This is
a process of redefining all the variables in the model by using
characteristic or reference values of dynamical quantities, such as,
velocity,; acceleration; force and moment. The normalized parameter will
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usually exhibit the same range of excursion, whether the machine being
simulated is large or small. Though not a requirement, the process yields,
in most cases, nondimensionalized equations. The objective of normalization
is keep each number in the simulation within a reasonable range. The same
normalized simulation model, with perhaps minor modifications, can be used
for wind turbines of widely varying physical sizes.

Each entity (variable/constant) in the simulation has a normalization
factor defined as follows:

Es = Ep * Fs *F
where E_ is the "system entity" or the simulation entity, and E_ is the
"physicgi entity" or the actual physical entity. In the curren® WEST-3
implementation, units on physical entities are feet, pounds, seconds, and
radians, unless otherwise specified. Degrees, inches or metric units are
not incorporated with physical entities. The "scale factor", FS is
described in the next subsection, 3.3.

n

F 1is the "normalization factor". For example, if E_ is the rotor
thrusg, then F will be the reciprocal of some force (e.éﬁ, the average
thrust or the mean value of the design thrust that can be developed), so
that Ep * Fn is nondimensional.

In the definitions of variables and constants in this section, the
normalization factors are expressed as ratios. The absence of a slash in
these definitions is interpreted as a default numerator.

The normalization factor definitions thus appear in the forms
F(numerator) /F (denominator)

where the numerator and denominator factors can be FORTRAN expressions. In
these normalization factors, the numerators and denominators are viewed
separately. Only one slash is allowed within each definition. Examples of
normalization factors are:

TH/RF NB*PXA*C/RHO*R*R*W 1./RHO*V*V

Note that these factors are not decoded as a standard FORTRAN expression.
For example, standard FORTRAN decoding begins at the left of an expression
and performs the operations as it moves to the right. FORTRAN would decode
the second normalization factor, above, as follows:

(NB*PXA*C/RHO) *R*R*W
In the conventions defined for normalization factors herein, the factors
are considered pure ratios. Proper decoding for this convention in the

example above would therefore be:

(NB*PXA*C) / (RHO*R*R*W)




3.3 Scaling

After normalization, the simulation model is "scaled", a process which
ensures that each variable and constant in the model takes on values within
the range of +1 and -1. Scaling is needed because all the computations in
WEST-3 are done in 1l6-bit fixed point arithmetic, a feature which is a
major contributor toward achieving a real-time simulation capability. The
limited significant figure accuracy attendent in such arithmetic demands
that special scaling techniques be used to process the equations (and the
constant data) before they are solved on WEST-3. The scaling process is
similar to the one used in analog computers. However, unlike analog
computers, the all digital WEST-3 is rather unforgiving of scaling errors
which cause over/underflows.

In conjunction with the normalization factor, the scale factor relates
a physical entity to the corresponding system entity, i. e.,

ES—EP*FS*F

The scale factors, F_, are numbers. They are selected so that the
system entity does not exceed the range -1 < E_ < +1. In the simulation,
the system entities are 16-~bit numbers that Can be viewed as having a
decimal point to the far left of the number. In the Computational Units
(CUs) of WEST-3, the numbers are represented in WEST-3 in 2's complement
form. Hence, these numbers can only range between +/-.9999 (decimal). The
CUs incorporate a hardware multiplier that performs 2's complement
multiplies assuming the decimal point placed as defined above. Hence, two
numbers with maximum values multiply to a number also at the maximum value
incorporated in the system.

n

3.4 Database Representations of Variables and Constants

Complete definitions of all the variables and constants in the
simulation model are given in Appendix F. Each definition consists of two
lines. The first line shows:

Label(s): Scale Factors : Normalization Factors

and the second line of each definition is an arbitrary field of 80
characters expressing the definition of the entity in English.

The labels are the symbolic names of the entities that appear in both
the physical and scaled equations. The label field is terminated by a
colon. Scale factors follow as a string of numbers separated by commas.
Normalization factors follow a colon. The normalization factors are
separated by commas. In these definitions, blanks have no significance, and
can be placed anywhere to aid in the clarity of the definitions.

The syntax associated with variable and constant definitions uses an
"autospawn” capability: a shorthand procedure whereby many definitions can
appear on any line. The autospawn facility operates on an entity enclosed
by commas, a colon and comma, or a comma and the end of the entire line.
The autospawn syntax, in general, has the form:

la’a’a ol E R Yo o alkey
A VAT Y AV W, ¢ 11



where the "C"s are characters of essentially any definition except
parentheses or the + or - sign. The autospawn syntax defines n+l items. The
first appears if the parentheses and the "+n" are dropped. The next is with
i+l substituted for i, and the parentheses and "+n" dropped. The last
defined entity is with the numeral "n" substituted for the "i".

For example, the syntax:
VA(3)+4

defines a string of labels:
VA3,VA4,VAS5,VA6,VAT

In some cases, the autospawn facility is used without parentheses to
repeat an identical definition. For example, the syntax:

.3333+43

Produces the equivalent of a string of four numbers ".3333". With this
definition, consider the following example of a variable definition using
autospawn:

VW(1l)+5: 2.5+45: 1./VR+2, 1./0R+2
WIND INERTIAL VELOCITY RESOLVED TO OVERALL SYSTEM COORDINATES.

This definition defines six scalar entities, VW1, VW2 ....VW6. All have
scale factors of 2.5. The first three in the string have normalization
factors 1./VR (where "VR" in this case is a velocity reference = rotor tip
speed in the case of the rotor), and the final three entities in the string
are normalized to the reciprocal of "OR" (Omega reference- a rotational
velocity reference which in the case of the rotor is the nominal rated
rotor spin rate).

The autospawn facility is very powerful, especially for systems which
tend to be organized in vector strings. The size of the data base required
to define a complex set of system equations is considerably reduced using
this autospawn definition. The autospawn can produce decreasing numbers in
a definition if a minus (-) sign is included in the parentheses. For
example, a definition of the form

VAB(-6)+5

might be convenient, where the autospawn would produce the equivalent
definition:

VAB6, VAB5, VAB4,....VABl.

Note that the final number in the string can be calculated by subtracting
the number following the "+" sign from the number in parentheses. The
similar situation emerges for ascending autospawn definitions, where the
last number in a string is the sum of the one in the parentheses and the
one after the "+" sign.
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3.5 Physical Equations and System Equations

The math models for the simulation are presented in this report section
in two forms: "physical equations" and "scaled equations". The physical
equations are direct representations of the reformulated mathematical
models, expanded to scalar form. These equations incorporate physical
variables and constants. The scaled equations are those actually solved by
the computer.

Appendix G presents the physical equations for the wind turbine
simulation model consisting of the Rotor, Air Mass, Tower, Power train, and
control system. The corresponding system equations can be found in Appendix
H.

The parameters in the scaled equations are the system parameters. The
equations appear very much like the physical equations, except that many
terms in them have additional factors. These factors are always real
numbers. The scale factors are chosen so that these numbers are usually
bounded between +/-1, just like system parameters. The numbers can be out
of this range if they are integral powers of 2, however,

The factors in the scaled equations have been placed there so that the
scaled equations are equivalent to the physical equations. To see how this
is required, suppose the following normalization and scale factors have
been defined for certain variables and constants:

Symbol Scale Factor Normalization Factor
X 5. S/W*R
Y 2. T/P*Q
2 20. R/W
A 6. R*R/S
B 25. P*P*Q*Q*R/T*T*W

Let the physical equation appear as follows:

Z=A*X+B*Y*Y

In this example, the scaled equation (i.e., the system equation) will be
Z = .6667 *A*X+ ,2*B*YyY*ry

One can confirm the equivalence of the system equation to the physical one
by substituting physical parameters (with the normalization and scale
factors included) in lieu of the corresponding system parameters in the
system equation. The items in the normalization factors should all cancel
and all real constants should merge into unity factors, such that the
system equation so processed becomes identical to the physical equation.

As stated before, the factors that appear in the system equations
(placed there for equivalence to the physical equations) are usually
bounded between +/-1. Indeed, the scale factors on the variables and
constants are chosen so that this is the case. When this is true, the
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hardware multiplier is used to simply multiply the number by the other
factor making up a full term in an equation. If this number appears as a
product with another real number in a term, the numbers can be combined
into a single number. For example, if a term in a physical equation
contained a number "2.", and a factor (arising from the scaling
considerations) of ".3333" is also needed on the term, the final numeric
factor would be ".6666", assuming of course that this final factor obeys
the rules.

The rules for factors are: bounded by +/-1 or integral powers of 2. In
the first case, the factor is processed in a normal way. If the factor is
represented as a power of 2, it must be considered a shift operation in the
code, not a multiply. For example, a factor of 16. would require a number
to be shifted four times to the left. An arithmetic shift would be made, so
that the bits that appear in the four rightmost positions in the word
(after shifting) are zero.

Division by integral powers of 2 can also be accomplished by shifting
right. Hence, it is correct to show divisions in equations, but this is
seldom of value since the division by 2 can be easily represented as a
factor of ".5",

It should be noted that one shift takes the same time in a CU as a
multiply. Factors larger than 2 will require more that one instruction,
however, so they are slower than multiplies and should therefore be avoided
unless absolutely necessary.

Scale factors and normalization factors are chosen based on a sound
understanding of the physics associated with the system being simulated.
After these factors are initially chosen, they are often changed many times
as a simulation is brought to operational status. The changes occur because
of many observations, including:

* A constant, after scaling and normalization, exceeds the range
+/-1.

* During simulation runs, a system variable is found to exceed
its range of +/- 1 for legitimate operating conditions of
interest.

* A numerical factor in a system equation is not within the rules
(within +/-1) or an integer power of 2.

* Inaccurate simulation results occur because important terms in
the equations are masked in the final calculations due to poor
scaling (leading to excessive loss of significant fiqure
accuracy) .




4. DYNAMIC SCALING

Most of the scaling associated with the simulation equations
incorporates "fixed" or constant scale factors; these have already been
discussed in Section 3. In key areas, however, variable scale factors are
needed because of the propensity of certain expressions to have severe
ranges of operation that preclude accurate simulation with only 16 bits and
a constant scaling.

In these cases, variable scale factors are used. These are in every way
equivalent to floating point exponents. These are only used where they are
definitely needed because they involve more operations (and therefore take
more time) than simple fixed-point operations.

When variable scale factors are used, they are interpreted as positive
binary exponents. An entity will thus be represented as

F * 2%*GF

where F is the fraction and SF is the variable scale factor. The fixed
scaling for the entity can be chosen so that SF is always a positive
integer number. Hence, SF is implemented in the programming by loading F
into the accumulator, multiplying it by the factor associated in the
expression and then shifting the result SF times to the left in the
accumulator., The undefined least significant bits (SF of them) in the word
are set to zero in this process.

In most cases where variable scale factors are used, two computer words
are used, one for F and the other for SF. In some cases, however (e.g.,
large tables), both F and SF can be packed into one word. For example, of
SF is given 3 bits, then one 16-bit word can carry the sign bit, a 12-bit
fraction (which is an accuracy of +/-.025%) and an exponent that can expand
the range of the parameter to +/-256 from the usual range of +/-1.

The 1l6-bit floating point format described above is very accurate in

representations of, for example, aerodynamic tables where the physical data
in the tables is usually not known to within 5 per cent.

4.1 Aerodynamic Geometry

This subsystem involves a special problem: the calculation of quotients
that can have a small denominator. The subsystem resides in the rotor blade
element computations, the group of computations in the simulation that are
most speed critical. For these reasons, special considerations have been
made regarding these computations.

The computations essentially require division, a process that is not
incorporated in the hardware of the Computational Units (CUs) of WEST-3.
Software divisions can be done, of course, but these are slow and therefore
very undesirable in this most critical area of the simulation.



Other considerations on the aero geometry calculations are-

* the results go to the aero tables-~ tables of physical data that are
never -known to high degrees of accuracy. Because of this, the results
of the aero geometry need not be any more accurate than the tables
are known. The aero geometry calculation must be made with speed and
accuracy carefully balanced so that excessive (unneeded) accuracy
does not penalize speed.

* The calculations are made in an integration loop, so that the values
of parameters entering and leaving the calculations change only a
small amount €£for every pass through the calculations. This fact
allows the use of algorithms that take advantage of the perturbation
nature of the process, using past values as starting points for new
calculations.

Figure 4.1 shows the aerodynamic geometry at blade radial station.

VASQ = VA2*2 + VA3**2
A _________ VA = SQRT( VASQ )

I VA

| Va3 SAB = VA3 / VA

{

! CAB = VA2 / VA

' va2 AB [

- ! M = RVC * VA

Figure 4.1 Aerodynamic Geometry at the Blade Station

Here VA is the air speed, VA2 and VA3 are its components, SAB and CAB are,
respectively, the sine and cosine of the angle of attack AB, M is the Mach
number, and RVC is the reciprocal of the local speed of scund. The Mach
number calculation is straightforward and requires no additional discussion
here. The others involve the square root and division operations, however,
both problematic in the simulation.

The calculation of airspeed is easily performed if the changes in SAB
and CAB are known. If the expression for the square of the airspeed is
differentiated and then divided through by 2*VA, the change in airspeed is
given as:

d(VA) = CAB * d(VA2) + SAB * d(VA3)

Hence, if the airspeed was known for the last pass through the equations,
the old values of SAB and CAB can be used with known differentials on the
input velocity components VA2 and VA3 to get the perturbation in airspeed.
A new estimate of airspeed can then be made, and used in the calculations
of new SAB and CAB parameters.

The real problem is the division by airspeed., An algorithm will now be

derived that converges to the reciprocal for small changes in the input
parameter.
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Let V be the known parameter, where it is necessary to compute x = 1/V.
If x_ is the last known value of the reciprocal, an error function, e, can
be défined using the new (given) V:

e=(V*X—l.)
If X is correct, e vanishes. The calculated error for Xo is

- * -

The derivative of e with respect to x is V. Since e needs to vanish, the
equation for dx is derived:

= = *
eo + de 0 eO + Vv dx

Solving for dx and noting that dx = x - xo, where x is the new desired
result:

X=X =-e€
(@] O/V

Approximating 1/V with the last value of x, xo, the correction expression
is

= * -
X =X (1. eo)
This is the final expression, since it is desirable to compute e, as an
intermediate calculation to see how close the convergence is. The e~ can be
eliminated, however, producing another version of the algorithm:

- * — *
X Xy (2. =V xo)
If V changes by small intervals, this expression converges rapidly to the
desired result using minimal calculations. Additionally, the error can be
tested and the number of iterations expanded. in cases where the error is
too large due to rapidly changing V.

This algorithm can be used to compute the reciprocal of air speed,
RECVA, which can be carried in the aero geometry section to facilitate
straightforward calculation of SAB and CAB. The problem with this is that
the reciprocal can span a very large range because airspeed can get very
small.

Variable scaling can be used to solve this problem where RECVA is
carried as a fraction and integer scale factor (floating point number). The
logic in the calculations detects overflow when RECVA is computed, which
calls for incrementing the scale factor and shifting the fraction right by
one (to eliminate the overflow). The scale factor can be decremented and
the fraction shifted left if the most significant bit of the fraction is
detected as a zero.

The floating point operations described above are simplified by the
fact that RECVA is always a positive number.
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4.2 Aerodynamic Coefficient Tables

The aerodynamic tables (for the wind turbine application where Mach
number is irrelevant) use SAB and CAB to produce lift and drag coefficients
CFA3 and CFA2. The tables. must apply to a 360-degree range of angle of
attack, AB, but they are both univariate tables in that only one of the two
input parameters are used to look up within the tables at a time.

The tables are separated into four quadrants defined by the points
where the sine and cosine of ABI are +/-.707. The quadrants and the
associated independent variables ("lookup parameters") are described in the
table, below:

Quadrant Definition Lookup Parameter
1 caB > .7071 SAB
2 SAB > .7071 CAB
3 CAB < -.7071 SAB
4 SAB < -,7071 CAB

Each of the quadrants has two tables, one for CFA3 and one for CFA2.
These tables have a number of elements that must be an integral power of 2,
but the numbers of elements in the tables associated with each quadrant can
be different. For example, quadrant 1 may have 1024 entries for CFA3 and an
equal number of CFA2 points. Quadrant 2 may have only 128 elements in each
table, however.

Parameters are fetched from each table simply by using the lookup
parameter as an address. The lookup parameter is masked to the correct
number of bits by multiplying it by a mask word. The result is added to an
offset, and the indirect address so created is used to fetch the desired
CFA3 and CFA2 numbers. By providing adequate granulation in the tables,
interpolation can be avided.

Because of the ranges that the aero coefficients can reach
(particularly CFA2), the tables are be 16 bit floating point numbers (three
bit binary exponent). The fixed scaling will enable the use of only
positive integer exponents.

The floating point numbers fetched from the tables are decomposed into
separate fraction and exponent words for use in computing the Aero Loads at
a blade radial station; products of these numbers with the dynamic pressure
and the blade chord will be shifted by the number of places of the exponent
to produce the final distributed blade aerodynamic loads, 1lift and dradgd.

4-4




5. CONSTANT DATA PREPROCESSOR

In addition to the gereration of the simulation model, described in the
previous sections, the other major task associated with a wind turbine
simulation is the preparation of the constant data. The data consists of
physical data and specifications of the specific wind turbine to be
simulated; the rotor dimensions, the wind speed, commanded rotor speed, the
frequencies and mode shapes if the blade modes etc.. Additionally, there
are a large number of constants which have be computed for use by the
simulation model; for example, products involving the blade mass
distribution and the elastic mode shapes integrated over the blade span.

All this raw data has to be normalized and scaled before it can be used
in the simulation. In Figure 1.1 of Section 1, this prosess of generating
the scaled constants is indicated as being carried out by a "PREPROCESSOR".
In actuality, the preprocessor consists of more than one specially designed
computer program, running on a computer external to WEST-3. At present,
Digital Equipment Corp. (DEC) PDPll computers are being used for this
purpose at Paragon Pacific Inc.. This section presents a outline of the
mechanics of generating the scaled constants.

Figure 5.1 shows a schematic of the computer programs and the various
data files used in processing the constant data. The decision to have a
number of programs, instead of a single large program, was made mainly for
debugging purposes. It is envisaged that, for future work, a more compact
version of preprocessor will be developed. Referring to Figure 5.1, there
are two distinct components, generation of the physical constants, and the
generation of an executable load module which can convert the physical
constants into scaled constants. Following are brief descriptions of the
components.

DSS2:

This program is used to process all the data associated with the wind
turbine rotor. The input to the program is a file, DSS2.INP, which contains
data pertinent to the rotor and the operating conditions. The major task of
this program is to relieve the user from having to generate the the large
number of constants needed for the simulation. The output file, DSS2.0UT,
contains an echo of all the input data, and a listing of the generated
constants. The other two output files, DSS2.SNG and DSS2.TBL, also contain
the same information, for use by the WEST load module.

WEST .CON

This file contains all the constants pertaining to the subsystems,
other than the rotor, i.e., Air Mass, Tower, Power Train, and Control
System. WEST.CON is directly input into the load module, WEST.

CONVRT:

The task of this program is to convert the data base representation
(see Section 3.4 and Appendix F) of the variables and constants used in the
simulation into standard FORTRAN programs. By using the system software of
the DEC PDPll computer, these FORTRAN programs can then be compiled and
linked to yield an executable load module, WEST.
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ROTOR PHYSICAL CONSTANTS DATA BASE: VARIABLES/CONSTANTS
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Figure 5.1. Generation of Scaled Constants: PREPROCESSOR
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As an example, a typical data base representatation of a variable is,

KGE : 20.0 : MR / RAR
CONSTANT IN THE GIMBALL SERVQO INTEGRATION FORMULA

where MR is the reference moment, and RAR is the reference 1linear
acceleration; both are defined in the output file DSS2.SNG. Here, the scale
factor is 20.0, and the normalization factor is (MR/RAR). The CONVRT

program will convert the data base representation into a FORTRAN arithmetic
expression,

KGE = 20.0 * MR / RAR

The input files XXX.VAR and XXX.CON contain, respectively, the
definitions of the variables and constants in the simulation (see Appendix
F). The output files XXX.XOR and XXX.HDR together constitute the FORTRAN
program containing arithmetic expressions, such as the one shown above for
the constant KGE. Also, there is a third output file, WEST.VNM, which
contains a list of the variables and constants.

COMPILE and LINK:

These steps of compiling and linking, to get the executable load
module, WEST, are straight forward uses of the DEC computer's system
software.

WEST

This is the executable load module, which does the actual conversion of
the physical constants in the files, DSS2.SNG, DSS2.TBL, and WEST.CON into
a form which can be downloaded into WEST-3. The output file WEST.VTX is a
listing of all the scaled constants, for the user's reference. The same
information is contained in XXX.VSV, in a binary format, for efficient
processing by the WEST-3 system software,

SIMCON.OBJ

This is library of several special purposes subroutines which have
been coded for use by the programs, DSS2, CONVRT, and WEST.
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6. WEST-3 SYSTEM SOFTWARE

After the simulation model and the scaled constants have been prepared,
the next step in the simulation process consists of using the WEST-3 system
software to generate the executable code which can downloaded into WEST-3.
From the inception of the design of WEST-3, it was recognized that having
adequate system software was the key to making the system friendly to the
user, and hence increase the usefulness of the system. The system software
that has been developed for WEST-3 is fairly standard, in the sense that,
the process of generating the executable code is similar to that in any
other computer. A schematic of the WEST-3 system software can be found on
page 1-2 of this report in Figure 1.1 of Section 1. Presented in this

Section are brief descriptions of the various components shown in Figure
1l.1.

The scaled simulation model consists of a set equations which are coded
in a subset of ANSI FORTRAN, the computer language used widely in
engineering applications. At present, the subset consists of the following:

1. arithmetic expressions
2. logical IF statements

3. GO TO statements

4. CONTINUE statements,

5. COMMON block definitions
6. FUNCTION subprograms

7. SUBROUTINESs,

This subset of FORTRAN has been found to be adequate for application to
wind turbine simulations. Due to the modular design of the system software,
future enhancements to the Translator can be readily incorporated. It
should be emphasized that the user is not required to code the simulation
model in the machine's native assembly language; programming in the
assembly language is a nontrivial process.

The Translator converts the scaled model into WEST-3 assembly language
mneumonics. The Assembler converts the output of the Translator into an
Object Code suitable for processing by the Linker. The role of the Linker
is traditional, in that it generates an executable Load Module by combining
several Object Code modules; typically, a main program and several
subroutines. The Translator, the Assembler, and the Linker constitute the
bulk of the system software for WEST-3. For debugging purposes, several
files, such as memory maps, are also generated while processing through the
software.

The Loader performs task of loading the merories of a Computational
Unit: the instructions (Load Module) into the Insruction Memory (IRAM), and
the scaled constants into the Processing Memory (PRAM). The Loader has been
designed to be as user friendly as practicable. For example, the choice of
which Computational Unit is to be 1loaded, the 1list of input/output
variables, configuration of the serial ports are all definable by the user
at the time of loading.

Several utility programs are also available for debugging. Among other
things they provide for the display of internal buses in a Computational
Unit, single stepping through the program, and peek/poke capabilities.
These utilites are invaluable for detailed debugging, when needed.
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7. CONCLUDING REMARKS

As part of the WEST-3 development process, validation of WEST-3 was
successfully completed by conducting simulations of the MOD-0 wind turbine.
The validation exercise served to prove the WEST-3 system, both hardware
and software. The exercise was also invaluable in providing direction for
enhancing the utility and user friendliness of WEST-3. As a result of the
experience gained during the development of WEST-3, the following efforts
are either underway, or planned for the near future:

l.

The method of coupling the rotor model to the power train and the

tower models needs to be reexamined; reformulation of the presently
used procedure may be indicated.

A more compact version of the existing preprocessor programs used
for preparing the constant data needs to be developed.

Extensive scaling of the simulation model, mandated by the fixed
point nature of WEST-3, is a tedious and time consuming task. To
eliminate the need for scaling, a 32-bit floating point system has
been designed. Breadboard verification of a single Computational

Unit is under progress, and a full system is expected to ready for
use early in CY 1986.

To significantly improve the user friendliness of the systenm,

development of a new suite of system software is underway for the
floating point system. The user will be able to write programs in
the ANSI FORTRAN-77 language; presently, only a subset of the
language is permitted. Further, the user will have access to many
more debugging tools than are available at present.
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This appendix is provided to clarify terms and define fundamental
methodology incorporated in the analyses presented throughout this
document. It is not intended to be comprehensive treatise on the methods of
vector and matrix analysis. Portions of the appendix are tuitorial in
nature to serve the purposes of definition and clarification, but a basic
knowledge in the areas of vector and matrix algebra and calculus on the
part of the reader is assumed.

A comprehensive analysis often involves many systems and system
components which require the general methods of mechanics. Motion entities
must be carefully defined and processed, and many transformations are
required. Hence, it is the purpose of this appendix to define uniform
conventions for these processes. Included in such definitions are:

* Definition of standard terms.

* Rigorous definition of coordinate systems, including shorthand
acronyms for each to simplify categorization and documentation.

* Derivation of standard coordinate-transformation procedures and
nomenclature.

* Definition of shorthand notations for use in rigorous definition of
the various motion entities.

A.l Definitionslgg Terms

This subsection serves to clarify the various terms applied throughout
an analysis, particularly as regards the definition of motion entities.

A motion entity is a position, velocity or acceleration. Motion
entities are generally expressed in either vector or vector column (matrix)
form.

A.l.l vectors

A vector is used in vector mechanics to relate the positions or motions
of two points. The vector can be translational (e.g., a position vector, or
translational velocity) or rotational. A vector requires three specific
definitions. To avoid confusion, one should specify these three definitions
with checklist reliability:

l.--What type of vector is it (position, velocity, acceleration,
translational, rotational)? This will be called the type (T) of
vector.

2.—-What is being 1located, or what is moving (point, axis system,
etc,)? Call this item the subject (8).

3.—-With respect to what (axis system, point, etc.) is the subject
located or moving? Call this base (B).




For example, if one is defining the velocity vector V*, the checklist
would require language such as

"V* is the translational velocity [l. type] of aircraft c.g. axes [2.
subject] with respect to inertial space [3. base]."

Vectors are rather abstract in that they do not require Resolution (R)
for their definitions; i.e., a specific coordinate system need not be
defined in order to rigorously define a vector entity. Vectors are simply
"arrows" in space between point pairs, and represent whatever the analyst
wishes to assign them.

A column vector or column matrix is numerical representation of a
vector. The column vector is a group of numbers called "elements"; each
represents a component of a vector resolved to a specific coordinate
system,

Hence, the column vector requires a fourth item in the definition
checklist, which is

4.--With respect to what axis system is the entity Resolved (R)?

As an example, let v be a column vector representing the vectorial
entity V*, discussed previously. Then a proper definition of v would be

"v is the translational velocity [1l. type] of aircraft c.q. axes [2.
subject] with respect to inertial space [3. base], resolved to c.g.
axes [4., resolution}.”

If any of these four key definitional items is not clearly indicated,
then the column vector is essentially undefined and much confusion and
error can result. This particularly is true when computer algorithms are
used to solve for vector entities. It is the author's experience that poor
definitions of motion entities and coordinate systems are the primary
causes of errors in computer dynamic analyses.

A.1.2 Time Differentiation

As is well stated in standard texts on mechanics, careful definition of
time differentiation is required. When the derivative of a motion entity is
taken with respect to time, the specifc coordinate system in which the
derivative is taken must be specified. This, of course, is because the time
derivation of motion entity is different among coordinate systems which
accelerate with respect to each other.

Derivatives of vectors are therefore seen to require a fifth
definition: the axis system with respect to which the differentiation is
taken. Call this the differentiation base (D) for the derivative vector.

A.l1.3 Scalars
Vectors have directorial properties as described above, but scalars do

not. A vector is represented by a group of numbers whereas a scalar is
represented as a single number.



The mass of a body, for example, is a scalar entity. The velocity of
the body would be represented by a vector. The magnitude of the vector is a
scalar.

A vector can be expressed as the vector sum of three orthogonal
vectors. The orthogonal vectors are parallel to the axes of some defined
orthogonal coordinate system. The magnitude of the orthogonal vectors are
scalars. These scalars are stacked in a column to become the "elements" of
the matrix or "column-vector" representation of the vector.

The matrix representation of a vector -a group of scalars- is a very
convenient vehicle for use in computer implementation of vector processes.

A.l.4 Operators

Rectangular arrays of scalars can be defined as "operators". These
operators can be added and multiplied in accordance with specific rules
defined for such operations.

In vector analyses, such operators are often called "tensors" or
"second-order tensors". They arise naturally in the derivation of the
rotational equations of motion for rigid bodies; in this form they are
often called "inertia tensors". Another term sometimes given to the
second-order tensor is the "diadic product”.

Square matrix operators are also used for various transformation
procedures. Such transformations are the subject of later sections of this
document.

A.l.5 Nomenclature Conventions

Conventions are defined below which can be used to derive and document
dynamics analysis equations. The conventions have been defined for
convenient incorporation into computerized systems including word
pProcessors.

In order to use computer systems to store and print dynamical
equations, some ground rules are needed which are somewhat different from
expressions. The ground rules of this type used herein are:

* Greek or other nonstandard characters are not used.

* Groups of standard graphics characters are used to form some special
symbols (e.g., the integral sign).

Equations can be formed on a computer-driven printer if
super-scripting, sub-scripting and backspacing are allowed, and if the
printer can process all characters in a full ASCII set. Many printers are

available that can do this. Table A-1 presents the full ASCII character
definitions.
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With these ground rules already stated as a gquide, the following
specific nomenclature definitions can be made:

* Scalar entities are represented by groups of characters beginning with an
upper-case letter. These are sometimes called "zeroth order tensors".

Examples of scalar nomenclature:

Sy oV oM, M, W(S)

* Column vector entities are represented by groups of characters beginning

with a lower-case letter. These are sometimes called "first order
tensors".

Examples of column vectors are:
vb,wa,b , u(s)

Note the functional dependency on the scalar parameter, S, in the last
example, above,

* Second-order matrices can be viewed as operators on vectors or operators
on the other second-order matrices. These are often called "tensors" or
"second-order tensors" in dynamic analyses. Such entities are represented
by groups of characters beginning with an upper case letter and ending
with a period. The period distinguishes the operator from a scalar.

Examples of operators are:

R. , X F

3° 7 Cave

Note the functional dependence of the X. operation on the vector v in the
last example, above.

’ X(v).

* Time derivatives of entities can be represented in a number of ways.
Superscript dots and primes are often used to denote differentiation with
respect to time and space (i.e., some nontime parameter), respectively.
Differential notation is also sometimes used, e.q.,

d (v) /4t

for differentiation of the item in parentheses with respect to the
scalar, T.

In the present conventions, the superscript dot is used to represent time
differentiation with respect to the axis system of resolution. For
example, if v is a velocity resolved to, say, coordinate system RAX, then

v' is the time derivative of v taken with respect to RAX.

Not withstanding this convenient nomenclature, clear and specific
"checklist" definitions should be given in all derivations defining the
differentiation base.




* The symbol for integration is
_/‘g Ids,

for integration of the interand I with respect to S between boundaries a
and b,

The summation process is indicated by, for example:
sV s,
-i"i

where the scalars Si are summed for i = 1,2...N.

* If a vector is to be defined from a group of scalars, it is convenient in
printed material to show the column vector as a transposed row vector.
For example:

T

V=(‘]1’V2,V )

3

defines a column vector as composed of three scalar elements V y V, and

V, . Superscript T denotes the transpose of the row vector to pr%duc% the
cglumn vector,

* Identity vectors and operators are often needed in an analysis., The
following conventions are therefore defined, for convenience.

identity vector:
i=@,1, 17T

specific identity vectors:

. T
i, = (1, 0, 0)
. T
12 = (0’ l, 0)
i3 = (0, 0, 1)*

The identity operator I. is defined as a diagonal square matrix with
unity elements on the diagonal and all other elements zero.

Specific identity operators can be defined as were the specific identity

vectors. For example, I,. is a matrix of all zeros except for unity in
the second diagonal position.

A2 Coordinate System Definitions

A.2.1 General Conventions

As in the case with motion entities, rigorous definition of coordinate
systems is required if an accurate dynamic analysis and subsequent computer
implementation are to be accomplished.



For motion analysis, the standards used herein for coordinate systems
incorporate:

* Right-handed orthogonal systems
* gSpecific axes in a coordinate system numbered 1, 2 and 3.

For example, if the column vector v is expressed in three elements
resolved to the axes of a particular coordinate system, then the elements
will have notation V., V. and V, . Note the upper case notation, since the

elements of a column ecé%r are scalars.

A.2.2 Abbreviations for Coordinate Systems

Many coordinate systems are usually required in a dynamic analysis.
Abbreviating their full names 1is very convenient, especially in the
checklist definitions of the various entities used in the analyses.
Abbreviations take such forms as RAX for "rotor axes", IAX for "inertial
axes", etc.

A.3 A shorthand Notation for Entity Definition Checklists

The previous sections have expressed the powerful need for careful and
comprehensive definitions of motion entities in dynamic analyses. Most
motion entities require four items in the specification 1list: type,
subject, base and resolution. Derivative entities require a fifth
specification, the axis system in which the derivative 1is taken: the
differentiation base.

Force and moment vector columns need type, subject (point of
application) and resolution specifications.

A shorthand notation can be defined which simplifies laborious
definitions for all items in an analysis. The shorthand also is a tool for
discipline--it can be incorporated in each entity definition as a standard
procedure, so that its presence assures proper and complete definition of
each item used in an analysis. Consider the shorthand nomenclature

T: ,8$: ,B: ,R: r D ¢ .

abbreviations of various items are substituted where the "underline" areas
appear in the suggested nomenclature. With the exception of the "type" part
(T:) of the shorthand specification, the abbreviations usually refer to
coordinate systems.

An example specification is

T:XV, S:CAX, B:IAX, R:CAX

Such a specification may apply to the vector, say Vo In this case, v
is a translational velocity of center-of-gravity axes  (CAX) moving wit
respect to inertial axes (IAX) resolved to CAX. If a differentiation is

involved, a fifth item is added. For example, v£ would be specified:

T:XV, S:CAX, B:IAX, R:CAX, D:CAX
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In this case, the dot denotes differentiation with respect to time taken in
the CAX system. Note that the type specification refers to the
undifferentiated vector, in this case v_ . The dot is viewed as an
operation on the entity, but the type of eﬁiity does not change because of
the indicated presence of the operations.

To further aid in the shorthand process, the following abbreviations of
entity types is suggested.

XP Translational or linear position - a position vector
RP Rotational position: 1i.e., an angular vector
XV Translational velocity

RV Rotational velocity

XA Translational acceleration
RA Rotational acceleration
F Force
M Moment
A.4 Operations on Scalars, Vectors and Operators

Standard texts on tensor mechanics define the types of operations that
can be performed with scalars, vectors and tensors. Some of these
operations are summarized below for completeness of this document, as they
apply to the matrix representation of scalars, vectors and tensors.

A.4.1 Operations on Scalars
Straightforward arithmetic operations include addition, subtraction,

multiplication, division; standard operations of the calculus include
differentiation and integration

A.4.2 Operations on Vectors

Column vectors can be added and subtracted by performing scalar
additions or subtractions of their elements. If a and b are vectors

_ T T
a+b=(A ,A ,A) + (B ,B,, By (A4.1)

T
(Al +B, , A  +B A, + B3)

1 2 2" 73

The process of subtraction is identical.




Two types of vector products are defined, one which results in a scalar
and one which results in another vector.

The scalar product is the product of the magnitude of two vectors times
the cosine of the angle between vectors. For column vectors, the scalar
product is the sum of the products of the elements. For the example vectors
a and b previously defined, the scalar product is

S, =A B, +A B, + A, B, . (A4.2)

ab 171 2 2 373
another form of this expression is

_ T
Sab =a b (A4.3)

where aT is a row matrix formed by transposing the a column matrix.

sab = Sba (Ad.4)

The vector product or "cross product" of two vectors is defined as a
vector normal to the plane created by the two vectors being multiplied,
with a magnitude equal to the product of the individual magnitudes times
the sine of the angle between the operand vectors. If the two operands, say
a and b, are column vectors, the cross product is conveniently expressed
using a special cross operator,

Vab = cross product vector = X{(a).b

where the skew-symmetric matrix operator is defined

X (a). = A 0 A (A4.5)

One important property of the cross product operation is expressed as

X (a).b=-X (b)), a =X (-b). a (A4.6)
Another property is

X (a). a = 0 for all a. (A4.7)

The argument indicated for X. in the definitions presented above is a
vector. The argument can also be a scalar if X. carries a subscript
indicating which positions the scalar is to occupy. Note the equivalence of

the following situations in this regard:

X, (a). is equivalent to X (a). with a = Aii

A-10




Other useful relationships associated with the cross product operator
involve triple products:

_ T _ T _ -
X (a). X (b).c = (a~ ¢)b (a~ b)c = Sac b sabc (A4.8)
X (a). X (b). X (a). = -a b X (a). = -5, X (a). (A4.9)

These relationships can be proven by processing the matrices and comparing
results—--element be element.

Division of vectors is generally not defined.
A.4.3 Operations on Second Order Tensors

Tensors are added and subtracted by element, as are vectors. Two
operand tensors so processed must, of course, have the same dimensions
(same numbers of rows and columns); the tensors need not be square.

Multiplication of tensors can occur in the form

A. = B.C. (24.10)
but B. must have the same numbers of columns as C. has rows. If B. has i
rows and j columns, and C. has j rows and k columns, then A, is of

dimension i by k.

In general, the tensor product is not commutative, so B.C. is generally
not equal to C.B.

A tensor can premultiply a vector to produce another vector, as in

a =G.b (24.11)
This form is the standard form used in transformation procedures, where a
vector resolved to one coordinate system 1is converted to a column
representing the same vector resolved to another system.

Division of a tensor can occur if it is square and nonsingular. The
process is called "inversion" in the matrix vernacular, and is denoted
herein with superscript negative one (-1). If the inverse of a matrix, say
M., exists, and

a =M.b (24.12)
then
-1
b=M. "a (A4.13)

The rules and methods associated with inversion are many: expression of
these is beyond the scope of this document.

One rule on tensor products worth noting here is
.87 = 8.7 a7 (A4.14)

where superscript "T" denotes the transpose.
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A.4.4 The Calculus of Scalars, Vectors and Tensors

Scalars, vectors and tensors are called matrices, when expressed as
arrays of scalar elements. All matrices can be differentiated and
integrated by element. For example, the derivative of a column vector with
respect to some parameter, say S, 1is vector whose elements are the
derivative of the original vector elements with respect to S.

A.5 Standard Rotational Coordinate Transformations

Transforming motion and loads entities form one coordinate system to
another is one of the most common procedures performed in solving dynamic
system equations. Standardizing these processes, and using uniform
notation, reduces the probability of error to a considerable degree. Also,
standardization leads to relatively "clean" notation, simplifying the tasks
of technical documention and computer coding.

In the author's experience, the poor and nonuniform selection of
notation is a primary cause of error, second only to poor definition of
motions entities and axes. Poorly designed notational systems lead to
excessive use of multiple subscripts, superscripts, primes, hats, bars,
etc., which lead to typographical and computer coding errors.

The purpose of this subsection are to define standard coordinate-
transformation methods and to specify uniform nomenclature conventions for
such processes.

A.5.1 Resolution Transformations

Since vectors do not require resolution, their definitions are not
affected by coordinate frames not being parallel. Column-vectors, however,
do require resolution for their 'definitions, and therefore require
transformation.

Suppose, for example, that r is some position column vector, resolved
to the a axis system (AAX), and r8 is a column vector representing the same

entity as Ly but resolved to the b axis system (BAX). Then

r, = R.T (A5.1)

where R, is a 3 x 3 rotational transformation matrix. R. will be the
identity matrix if the a and b axis systems are parallel.

The R, array is also called the matrix of direction cosines.
Many methods are available for calculating the matrix, R. . One
convenient method was developed by Euler, and involves synthesizing R.

using the product of three arrays